
Using Mesh Shaders for Continuous Level-of-Detail Terrain
Rendering
Matthias Englert

Tinman 3D
Fulda, Germany

me@tinman3d.com

ABSTRACT
Using a commercial terrain engine [Englert 2012] as an example,
we discuss both advantages and disadvantages of the continuous
level-of-detail approach [Lindstrom and Pascucci 2001] to terrain-
rendering while comparing our implementation with other hybrid
[Dick et al. 2010] and implicit [Jad Khoury and Riccio 2018] ap-
proaches.We show howmesh shader and inline ray-tracing features
of DirectX 12 Ultimate can be used to remedy those disadvantages.

KEYWORDS
terrain rendering, continuous level-of-detail, right-triangulated ir-
regular network, mesh shader, inline ray-tracing

ACM Reference Format:
Matthias Englert. 2020. Using Mesh Shaders for Continuous Level-of-Detail
Terrain Rendering. In Special Interest Group on Computer Graphics and
Interactive Techniques Conference Talks (SIGGRAPH ’20 Talks), August 17,
2020. ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3388767.
3407391

1 INTRODUCTION
We describe the essential stages of a general-purpose pipeline for
continuous level-of-detail terrain-rendering in real-time: using on-
the-fly data processing and/or offline processing, terrain data from
arbitrary sources is transformed into a uniform hierarchical data
representation (UHDR). At run-time, the UHDR is transformed
into a view-dependent right-triangulated irregular network (RTIN)
[Lindstrom and Pascucci 2001], a fixed-size vertex buffer (VB) and
a set of texture atlases (TAs).

The hierarchical structure of the RTIN is used to perform spatial
queries, such as picking, horizon culling and frustum culling. The
VB encodes vertex data in a way that resolves floating-point preci-
sion issues; this allows to use terrain maps up to a size of 230 + 1
by 230 + 1 samples.

We describe a scheme for arranging vertices in the VB which
provides near-optimal cache locality for the applied algorithms,
both on the CPU and the GPU. We introduce the concept of palette-
based material tokens (PBMT), which are stored in the VB and can
be used as a replacement for traditional texture splat-maps.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGGRAPH ’20 Talks, August 17, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7971-7/20/08.
https://doi.org/10.1145/3388767.3407391

The TAs are used to provide unique texture data for the terrain,
with a maximum virtual texture dimension of 230 by 230 texels. For
rendering, the RTIN is transformed into a contiguous triangle-based
GPU primitive. View-dependent hardware tessellation techniques
are used to implement displacement-mapping for the PBMT.

We present implementation details for various aspects of the
pipeline, using different GPU feature levels for comparison: DirectX
9, DirectX 10 (geometry shaders, texture arrays), DirectX 11 (hull,
domain and compute shaders), DirectX 12 Ultimate (amplification
and mesh shaders, inline ray-tracing). We show that recent GPU
features can be used to move critical pipeline steps onto the GPU,
which removes bottlenecks like CPU triangulation and upload of
triangle-based GPU primitives.

2 TERRAIN PIPELINE
In contrast to recent implicit approaches [Jad Khoury and Riccio
2018], our approach uses an explicit hierarchical data structure on
the CPU in the form of an extended directed acyclic graph (xDAG),
to encode the RTIN that represents the terrain mesh.

Unlike other hybrid approaches [Dick et al. 2010], we solely rely
on triangles for rendering, thus requiring hardware rasterization
or hardware ray-tracing.

These design decisions impose certain challenges for a terrain-
engine [White 2008], for which we describe viable solutions:

• Using a vertex pool to avoid dynamic allocations
• Maintaining cache locality in the vertex pool
• Fixed-path xDAG traversal without arithmetic
• Mirroring data to the GPU incrementally
• Using NO_OVERWRITE semantic to avoid GPU stalls
• Using meshlets instead of triangle-based GPU primitives

Having a triangle-based explicit data structure on the CPU allows
for versatile features, such as spatial analysis on the CPU (picking,
collision detection, visibility determination), support of downgrade
GPU feature levels (e.g. DirectX 9, WebGL) and general-purpose
utilization in content pipelines (e.g. export of terrain tiles).

2.1 Overview
The Data Processing stage performs on-the-fly processing of ter-
rain data from arbitrary sources and/or streams in data resulting
from offline processing, producing content in the UHDR, which is
accessed by the subsequent pipeline stage.

The Mesh Refinement stage transforms the UHDR into a view-
dependent triangle mesh (xDAG), a fixed-size vertex buffer (VB)
and a set of texture atlases (TAs). The VB encodes vertex data in a
way that resolves floating-point precision issues; this allows to use
terrain maps up to a size of 230 + 1 by 230 + 1 samples. The VB may

https://doi.org/10.1145/3388767.3407391
https://doi.org/10.1145/3388767.3407391
https://doi.org/10.1145/3388767.3407391


SIGGRAPH ’20 Talks, August 17, 2020, Virtual Event, USA Matthias Englert

Table 1: Pipeline stages per GPU feature level

Stage DX9 DX10 DX11 DX12
Data Processing CPU CPU CPU CPU
Mesh Refinement CPU CPU CPU CPU

Batching CPU CPU CPU GPU
Triangulation CPU CPU CPU/GPU GPU
Tessellation n/a GPU GPU GPU

include palette-based material tokens, which can replace traditional
texture splat-maps. The TAs are used to provide unique texture
data for the terrain, with a maximum virtual texture dimension of
230 by 230 texels.

The Batching stage exploits nested bounding geometries [Lind-
strom and Pascucci 2001] in the xDAG in order to apply culling
techniques, such as horizon culling and frustum culling. Then, ren-
der batches are generated for the relevant terrain parts. Each render
batch corresponds to a GPU draw command, which may be direct
or indirect, depending on the GPU feature level.

The Triangulation stage traverses the xDAG and generates in-
dexed triangle-based primitives for the generated terrain batches,
which are submitted to the GPU for rasterization. When run on the
CPU, index data must uploaded to the GPU for each frame, using
DISCARD semantic, to avoid stalling. This consumes valuable band-
width and enforces sequential processing, which quickly becomes
a bottleneck.

The Tessellation stage applies view-dependent subdivision to the
triangulation for displacement mapping. Since theMesh Refinement
stage delivers a crack-free triangle mesh at fine resolution with
tangent spaces and world-to-pixel size coefficients, the subdivision
algorithm may be simplistic, for example a basic 1-to-4 triangle
split. In practice, two levels of subdivision are sufficient in most
cases.

3 IMPLEMENTATION DETAILS
Supplementary pseudo-code (seeAlgorithms.cs) is provided to demon-
strate several implementation details.

3.1 UHDR
We outline the structure of the UHDR for rectangular and plane-
tary terrains, including a storage partitioning scheme based on the
level-of-detail of individual terrain samples for efficient retrieval of
terrain data.

3.2 xDAG
We present the structure of the xDAG and list the algorithms that
need to be performed on it, giving details for some of the most
important ones. We give details regarding vertex pooling and the
use of spatial buckets in order to maintain cache locality.

3.3 Culling
Horizon culling and view frustum culling are typically applied on
the CPU, since the Data Processing stage uses the results in order
to fetch new texture data only for the visible terrain parts.

For DX12, we show how on-the-fly visibility culling can be per-
formed in amplification shaders: The hierarchical structure of the
xDAG is mirrored to the GPU, in the form of bounding volume hier-
archies. Then, inline ray-tracing is used to perform spatial queries
for visibility determination. This approach is advantageous when
rendering the same scene into different views, for example shadow-
map cascades.

3.4 Batching
Traditionally, render batches are generated by the CPU and submit-
ted to the GPU through draw commands. For DX12, we describe
how to encode render batches, upload them to the GPU and process
them in an amplification shader. This way, the CPU only needs to
issue a single draw command and the GPU can process the render
batches in parallel.

3.5 Triangulation
We show how the xDAG can be traversed in order to generate
contiguous triangle-strip (~1.61 indices per triangle) and triangle-
list (3 indices per triangle) primitives. For DX11, we describe the
terminal-triangle primitive (~0.25 indices per triangle), which is
expanded to a triangle-list on the GPU, using a compute shader.
For DX12, we introduce the sector-list primitive (<0.01 indices per
triangle), which is expanded to meshlets on the GPU. With sector-
lists, required CPU work for triangulation becomes negligible and
GPU processing becomes highly parallel.

3.6 PBMT
We describe the encoding of the PBMT and present CPU and GPU
algorithms for performing filter operations on them.

3.7 Tessellation
For DX10, we describe a simple 1-to-4 triangle subdivision scheme
which can be implemented in a geometry shader for up to 2 sub-
division levels. For DX11, fixed-function hardware tessellation is
used, via hull and domain shaders. For DX12, we show how to use
a variant of the DX10 subdivision scheme in the mesh shader, to
replace the fixed-function hardware tessellation stage.

4 EXAMPLES
For demonstration, we show two terrains:

• Rectangular game-like terrain with PBMT, based on a terrain
map of 1,048,577 by 1,048,577 samples

• Planetary Earth terrain with TAs (satellite imagery), based
on a terrain map of 1,073,741,825 by 1,073,741,825 samples.

REFERENCES
Christian Dick, Jens Krüger, and Rüdiger Westermann. 2010. GPU-Aware Hybrid Ter-

rain Rendering. In Proceedings of IADIS Computer Graphics, Visualization, Computer
Vision and Image Processing 2010. 3–10.

Matthias Englert. 2012. Tinman 3D SDK - Real-time Terrain. https://www.tinman3d.com
Jonathan Dupuy Jad Khoury and Christophe Riccio. 2018. Adaptive GPU Tessellation

with Compute Shaders. https://github.com/jdupuy/opengl-framework/tree/master/
demo-isubd-terrain

Peter Lindstrom and Valerio Pascucci. 2001. Visualization of Large Terrains Made Easy.
Proc. IEEE Visualization 2001. https://doi.org/10.1109/VISUAL.2001.964533

Matthew White. 2008. Real-Time Optimally Adapting Meshes: Terrain Visualization
in Games. Int. J. Computer Games Technology 2008 (01 2008). https://doi.org/10.
1155/2008/753584

https://www.tinman3d.com
https://github.com/jdupuy/opengl-framework/tree/master/demo-isubd-terrain
https://github.com/jdupuy/opengl-framework/tree/master/demo-isubd-terrain
https://doi.org/10.1109/VISUAL.2001.964533
https://doi.org/10.1155/2008/753584
https://doi.org/10.1155/2008/753584

	Abstract
	1 Introduction
	2 Terrain Pipeline
	2.1 Overview

	3 Implementation Details
	3.1 UHDR
	3.2 xDAG
	3.3 Culling
	3.4 Batching
	3.5 Triangulation
	3.6 PBMT
	3.7 Tessellation

	4 Examples
	References

